Low-Rank Matrix Approximation with Stability
نویسندگان
چکیده
Low-rank matrix approximation has been widely adopted in machine learning applications with sparse data, such as recommender systems. However, the sparsity of the data, incomplete and noisy, introduces challenges to the algorithm stability – small changes in the training data may significantly change the models. As a result, existing low-rank matrix approximation solutions yield low generalization performance, exhibiting high error variance on the training dataset, and minimizing the training error may not guarantee error reduction on the testing dataset. In this paper, we investigate the algorithm stability problem of low-rank matrix approximations. We present a new algorithm design framework, which (1) introduces new optimization objectives to guide stable matrix approximation algorithm design, and (2) solves the optimization problem to obtain stable low-rank approximation solutions with good generalization performance. Experimental results on real-world datasets demonstrate that the proposed work can achieve better prediction accuracy compared with both state-ofthe-art low-rank matrix approximation methods and ensemble methods in recommendation task.
منابع مشابه
Structured Block Basis Factorization for Scalable Kernel Matrix Evaluation
Kernel matrices are popular in machine learning and scientific computing, but they are limited by their quadratic complexity in both construction and storage. It is well-known that as one varies the kernel parameter, e.g., the width parameter in radial basis function kernels, the kernel matrix changes from a smooth low-rank kernel to a diagonally-dominant and then fully-diagonal kernel. Low-ran...
متن کاملPractical Sketching Algorithms for Low-Rank Matrix Approximation
This paper describes a suite of algorithms for constructing low-rank approximations of an input matrix from a random linear image, or sketch, of the matrix. These methods can preserve structural properties of the input matrix, such as positive-semidefiniteness, and they can produce approximations with a user-specified rank. The algorithms are simple, accurate, numerically stable, and provably c...
متن کاملRandomized single-view algorithms for low-rank matrix approximation
This paper develops a suite of algorithms for constructing low-rank approximations of an input matrix from a random linear image of the matrix, called a sketch. These methods can preserve structural properties of the input matrix, such as positive-semidefiniteness, and they can produce approximations with a user-specified rank. The algorithms are simple, accurate, numerically stable, and provab...
متن کاملOn the Impact of Kernel Approximation on Learning Accuracy
Kernel approximation is commonly used to scale kernel-based algorithms to applications containing as many as several million instances. This paper analyzes the effect of such approximations in the kernel matrix on the hypothesis generated by several widely used learning algorithms. We give stability bounds based on the norm of the kernel approximation for these algorithms, including SVMs, KRR, ...
متن کاملA Rank Revealing Randomized Singular Value Decomposition (R3SVD) Algorithm for Low-rank Matrix Approximations
— In this paper, we present a Rank Revealing Randomized Singular Value Decomposition (R 3 SVD) algorithm to incrementally construct a low-rank approximation of a potentially large matrix while adaptively estimating the appropriate rank that can capture most of the actions of the matrix. Starting from a low-rank approximation with an initial guessed rank, R 3 SVD adopts an orthogonal Gaussian sa...
متن کامل